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Abstract. We study chaos in a two-dimensional Ising spin glass by finite temperature Monte
Carlo simulations. We are able to detect chaos with respect to temperature changes as well as
chaos with respect to changing the bonds, and find that the chaos exponents for these two cases
are equal. Our value for the exponent appears to be consistent with that obtained in studies at
zero temperature.

1. Introduction

A characteristic feature of spin glasses is that the relative orientations of the spins in the
spin glass state are not uniquely determined by the model, but rather vary with external
parameters such as the temperature or the magnetic field. At large separation,R, the
correlation between the spins varies in a chaotic manner as a function of temperature, and,
when the temperature is altered by an amount1T , will change substantially at distancesR
greater thanl1T where

l1T ∼ (1T )−1/ζ (1)

which defines the chaos exponentζ . This temperature-induced chaos has been quite difficult
to see in Monte Carlo (MC) simulations [1, 2] and mean-field theory [3, 4], and claims have
been made that it is absent or very small [1–3]. A larger chaotic effect has been observed
when making a small change in the couplings [5, 6].

Chaos with temperature has been shown to be a common feature of the two main models
for the spin glasses phase: mean-field theory [3, 4] and the droplet theory [7–10]. The latter
is based upon real space renormalization group calculations which allow quantitative results.
In particular, they indicate that a temperature perturbation generates a disorder perturbation
and thus these two perturbations should have thesamechaos exponent [10].

Here we study chaos with both1T and a change in the couplings,1J (defined precisely
in equation (6) below), by MC simulations for a two-dimensional Ising spin glass at finite
temperature. SinceTc = 0 for this model, all our data is in the paramagnetic phase, where
the correlation function tends to zero at large distances, so we are looking for chaos in the
sign of this decaying function (such chaos has been shown in a one-dimensional system
[9]). We study distances which are smaller than the correlation length so the chaos we
obtain is that corresponding to the critical point [10]‡.

† Permanent address: Laboratoire de Physique, Ecole Normale Supérieure, 69364 Lyon Cedex 7, France
(Laboratoire associé au CNRS).
‡ One can also consider the opposite limit,R � ξ , in which case the chaos exponent is that for the infinite
temperature paramagnetic fixed point [10].
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Our main results are as follows.
(1) It is possible to see chaos with1T as well as chaos with1J .
(2) The chaos exponents for1T and1J appear to be equal.
(3) The chaos exponent found here at finite-T seems to be consistent with that obtained

at T = 0 [6, 7].
This paper is organized as follows. In section 2 we define the model and various

quantities of interest. Section 3 discusses finite-size effects which will be very important
for the analysis while section 4 presents the numerical results that are then interpreted in
section 5.

2. The model

We consider the Edwards–Anderson Hamiltonian with Ising spins and nearest-neighbour
couplings,

H = −
∑
〈i,j〉

JijSiSj (2)

where {Jij } are drawn from a Gaussian distribution with zero mean and variance [J 2
ij ]av

equal to unity. We denote by [· · ·]av an average over the interactions. The spins lie on a
square lattice of linear sizeL with periodic boundary conditions.

For each realization of the disorder we simulate several copies (or replicas) of the
system. The basic quantity that we calculate is the replica overlap

qab = 1

N

N∑
i=1

S
(a)
i S

(b)
i (3)

wherea and b denote replicas andN = L2. When we investigate chaos with1T , some
of the replicas will have identical bonds but slightly different temperatures and when we
investigate chaos with1J some of the replicas will have slightly different couplings but
the same temperature.

Next we describe quantities that we calculated in the simulations. First, from replicas
with the sametemperatures and bonds, we compute the standard equilibrium quantities,g,
the Binder ratio, andχSG, the spin glass susceptibility, defined by

g ≡ 1

2

[
3− 〈q

4〉
〈q2〉2

]
(4)

χSG≡ L2〈q2〉 (5)

where 〈· · ·〉 denotes both the average over disorder and the statistical mechanics (MC)
average. During the simulation, the firstt0 sweeps are used for equilibration and the nextt0
sweeps are used for measurements. We check that the system is in equilibrium by standard
methods [11]. The equilibration timet0 limits the maximum size and minimum temperature
we can study. In our case, we can reachT = 0.4 for L = 6 andT = 0.55 for L = 10,
which both require aboutt0 = 106 MC steps.

Next we describe quantities that we calculate to determine the chaos. First, consider
chaos by changing the bonds and keeping the temperature fixed. This is done by running
one replica with a set of bonds{Jij } and another with bonds{J ′ij }, where [10]

J ′ij =
Jij + xij1J√

1+1J 2
(6)



Chaos in a two-dimensional Ising spin glass 5313

wherexij is a Gaussian random variable with zero mean and unit variance. Note that{J ′ij },
and{Jij } have thesamedistribution. A convenient measure of how much the change in the
bonds alters the spin orientations is the dimensionless ‘chaos parameter’ [5],

r1J ≡ 〈q
2
JJ ′ 〉
〈q2
JJ 〉

(7)

where the labels on the replicas refer to the bond distributions that are used.
When the temperature is changed we consider the overlap from replicas at temperatures

symmetricallydisplaced aboutT as follows

r1T ≡
〈q2
T+T−〉√

〈q2
T+T+〉〈q2

T−T−〉
(8)

where the temperatures areT± = T ±1T/2. We believe that this is the first time that chaos
with temperature has been calculated in this way. Other attempts [1] to look for chaos with
temperature used a quantity which had an asymmetry in temperature and therefore involved
bigger corrections to scaling when the ratio1T/T was not vanishingly small.

We average over 80–400 realizations of the disorder. Error bars are determined by
grouping the results for the different samples into bins and calculating the standard deviations
among bins†.

3. Finite-size effects

To be in the scaling regime it is necessary to work at moderately low temperatures where
finite-size effects are important, and so finite-size scaling [12] techniques are needed.

Sinceξ ∼ T −ν , whereξ is thebulk correlation length, and since, at theT = 0 critical
point, the ground state is unique, finite-size scaling predicts the following behaviour for the
Binder ratio andχSG:

g = g̃(L1/νT ) (9)

χSG= L2χ̃SG(L
1/νT ). (10)

We also need the finite-size scaling ansatzes for the chaos parameters,r1J andr1T :

r1J = r̃1J (Lζ1J,L1/νT ) (11)

r1T = r̃1T (Lζ1T,L1/νT ) (12)

where we have used equation (1). It is inconvenient to analyse a function of two variables,
so, following a suggestion from Huse, we have taken data where the second argumentL

1
ν T ,

is roughly constant. We then try to collapse the data onto a single curve by plotting it against
Lζ1J with a suitable choice ofζ .

4. Results

Scaling plots for the Binder ratio and spin glass susceptibility are shown in figures 1 and 2.
In figure 1 the sizesL range from 4 to 12 and temperaturesT range from 0.4 to 1.6. The
resulting correlation length exponent at theT = 0 transition isν = 2.0± 0.2. For figure 2
the sizes extend fromL = 4 toL = 20, at temperatures from 0.4 to 1.6, and the correlation
length exponent is given byν = 1.6± 0.2.

† Also, as a check of the code, we verified that the Bethe–Peierls approximation,χSG =
(1+ [w2]av)/(1− 3[w2]av), wherew = tanh(Jij /T ), gives the same results as ours forT > 3.
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Figure 1. A scaling plot of the Binder ratio according to equation (9) for different sizes and
temperatures. The value of the correlation length exponent isν = 2.0.

Figure 2. A scaling plot ofχSG according to equation (10) for different sizes and temperatures.
The value of the correlation length exponent isν = 1.6.
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Figure 3. A scaling plot ofr1J according to equation (11) withL1/νT constant andν = 1.8,
the average of our estimates fromg andχSG. The value of the chaos exponent isζ = 1.0.

The value forν obtained fromg is in good agreement with finite temperature MC
simulations of Liang [13] and also agrees with the work of Kawashimaet al [14].
The estimate forν obtained fromχSG is somewhat smaller, presumably reflecting the
systematic corrections to finite-size scaling at the temperatures and sizes that we can study.
Interestingly, the same trend, namely a larger value forν obtained fromg than fromχSG,
has been seen in other models [15].

Combining the two values forν we estimate

ν̄ = 1.8± 0.4. (13)

We also determined the spin–spin correlation function for temperatures between 0.8 and
1.2. By fitting this data to an exponential function of position, we estimate the correlation
length, finding that it could be fitted toξ = AT −ν with A = 4± 0.5 andν = 1.8± 0.2, the
latter being consistent with the estimates from the finite-size scaling analysis above.

A scaling plot for chaos with1J , following equation (11) withL1/νT constant (and
ν = 1.8), is shown in figure 3, for sizes between 4 and 10 withζ = 1.0. The perturbation,
1J , lies in the range 0.05–0.3. Trying different values ofζ we estimate

ζ = 1.0± 0.1 (chaos with1J). (14)

A scaling plot for chaos with1T , following equation (12) withL1/νT constant (and
ν = 1.8), is shown in figure 4, forL 6 10, andζ = 1.0. The perturbation,1T , lies in the
range 0.05–0.4. Trying different values ofζ we estimate

ζ = 1.0± 0.2 (chaos with1T ). (15)

Note that the exponents for chaos with1J and1T , given in equations (14) and (15), are
equal within the uncertainties. We also see from figures 3 and 4 that the data forr1T does
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Figure 4. A scaling plot ofr1T according to equation (12) withL1/νT constant andν = 1.8,
the average of our estimates fromg andχSG. The value of the chaos exponent isζ = 1.0.

not deviate very much from unity, as compared with the data forr1J . This indicates that
the amplitudeof chaos with1T is smaller than that with1J , even though the exponents
are equal.

5. Discussion

Studying the two-dimensional Ising spin glass by finite-temperature MC simulations, we are
able to detect chaos with respect to both1J and1T and show that the chaos exponents
are equal, as expected [10].

We should point out that in order to define chaos with1T in the critical region it is
necessary thatν > 1/ζ . To see this note that we neededl1T in equation (1) to be less than
the correlation length,ξ ∼ T −ν , and also1T � T to be in the scaling region for chaos.
In our case, this inequality is satisfied (note that chaos in the critical region is also present
whenTc > 0 [10, 16]). Chaos with1J , on the other hand, can be defined irrespective of
the relative values ofν and 1/ζ .

Our estimates of the exponent, given in equations (14) and (15), are consistent with the
value ζ = 0.95± 0.05 [6] found from exact ground-state determinations. A similar value
was also found earlier by Bray and Moore [7].

Finally we note that our value forν agrees with work of Liang [13] who obtainedν ≈ 2
from MC simulations. However, a much larger value is inferred atT = 0, from domain
wall renormalization group calculations [17], i.e.ν = 4.2± 0.5, and from exact ground-
state calculation [6], i.e.ν = 3.559± 0.025. These discrepancies suggest a violation of the
scaling picture of the spin glass transition. Kawashimaet al [14] also found discrepancies
in the scaling theory. If there are violations of the scaling picture in two dimensions it
would be very valuable to understand them since similar violations may also occur in
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higher dimensions with a finiteTc, and also perhaps help resolve disagreements between
the droplet and mean-field pictures.
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